RF-BM-BG22A1(I) EFR32BG22C112 Bluetooth 5.2 Low Energy Module Version 1.3 Shenzhen RF-star Technology Co., Ltd. August 12th, 2022 # Silicon Labs BLE Module List | Chipset | Core | Flash
(KB) | RAM
(KB) | TX
Power
(dBm) | Model | Antenna | Power
Consumption
(µA) | Dimension
(mm) | Range
(m) | Photo | | |---------------------------------|--------------------|---------------|-------------|----------------------|---------------|------------------------|------------------------------|-------------------|--|--|--| | | | | | | RF-BM-BG22A1 | PCB/H
alf-
Hole | 57.82 | 16.5 × 11.6 | 70 m | RE-BM-BG557A RE-BM-BG557A STORY OF ST | | | EFR32BG2
2C112F352
GM32-C | 38.4
MHz
M33 | 352 | 32 | 0 | RF-BM-BG22A1I | IPEX/
Half-
Hole | 57.82 | 16.5 × 11.6 | 120 m | 자 - eta
자 - eta
자 - er - eta
자 - er - eta
자 - er - eta
이 대 대 대 대 대 대 대 대 대 대 대 대 대 대 대 대 대 대 | | | | | | | | RF-BM-BG22B1 | РСВ | 57.82 | 15.2 × 11.2 | | RF-star of RF-en-Bezzai from Date-Bezzai | | | | | | | | RF-BM-BG22A3 | PCB/H
alf-
Hole | 57.82 | 16.5 × 11.6 | BLE: BLE Long Range | RF – star
RF – star
SF S | | | EFR32BG2
2C224F512
GM32-C | 76.8
MHz
M33 | 512 | 32 | 6 | RF-BM-BG22A3I | IPEX/
Half-
Hole | 57.82 | 16.5 × 11.6 | BLE Long
Range:
BLE Long
Range: | RF-star
RF-8H-B622A31
RG 10
GMITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT:
MITT: | | | | | | | | | RF-BM-BG22C3 | CHIP/
Half-
Hole | 57.82 | 8.0 × 8.0 | BLE: BLE Long Range: | | #### Note: - 1. All modules based on EFR32BG22C112F352GM32-C do not support AoA/AoD and LE Long Range (125 kbps and 500 kbps) PHYs. - 2. All of the modules are based on Silicon Labs EFR32BG22 SoC series. Because the EFR32BG22 series ICs are compatible in package, pins, and peripherals, those modules are pin-to-pin compatible with each other if there are the same version of RF-star hardware version. www.szrfstar.com - 3. The power consumption is tested under 200 ms broadcast interval at 0 dBm TX power. - 4. The transmission range is the longest distance obtained by testing the module's maximum transmission power in an open and interference-free environment in sunny weather. - 5. Click the picture to buy modules. #### 1 Device Overview # 1.1 Description RF-BM-BG22A1(I) is an RF module based on EFR32BG22C112F352GM32-C, one of the Gecko family of SoCs from Silicon Labs, with a 32-bit ARM® Cortex®-M33 core with 38.4 MHz maximum operating frequency. It integrates a 38.4 MHz crystal, a matching, an antenna matching, a low-pass filter, and the antenna option (the one is a meander line inverted-F PCB antenna and a half-hole ANT pin, and the other is the IPEX connector and a half-hole ANT pin). As for the hardware, it supports Bluetooth 5.2 Low Energy and also has a range of analog and digital interfaces such as PRS, ADC, UART, SPI, I²C, PWM, ISO 7816, IrDA, I²S, EUART and PDM. It features low power consumption, compact size, robust connection distance, and rigid reliability. 1.27-mm pitch stamp stick package for easy assembling and cost-effective PCB design. As for the firmware, it can be preprogrammed with an RF-star BLE5.0 serial communication protocol for simple programming. #### 1.2 Key Features - RF Features - Bluetooth 5.2 Low Energy - Modulation - 2 (G)FSK with fully configurable shaping - TX power: -28 dBm ~ 0 dBm - Sensitivity - -98.9 dBm @ 1 Mbit/s GFSK - -96.2 dBm @ 2 Mbit/s GFSK - 32-bit 38.4 MHz ARM® Cortex®-M33 with DSP instruction and floating-point unit for efficient signal processing - Memory - Flash: 352 KB - RAM: 32 KB - Wide Operation Range - Single power supply - DC-DC mode: 2.2 V to 3.8 V - Bypass mode: 1.8 V to 3.8 V - Operating temperature: -40 °C to +85 °C - Storage temperature: -40 °C to +125 °C - Wide Peripherals - 12-bit 1 Msps SAR ADC - Up to 18 GPIOs with output state retention and asynchronous interrupts - 8 Channel DMA Controller - 12 Channel Peripheral Reflex System (PRS) - 4 × 16-bit Timer/Counter with 3 Compare/Capture/PWM channels - 1 × 32-bit Timer/Counter with 3 Compare/Capture/PWM channels - 32-bit RTC - 24-bit Low Energy Timer for waveform generation - 1×Watchdog Timer - 2 × Universal Synchronous/Asynchronous Receiver/Transmitter - UART - SPI - SmartCard (ISO 7816) - IrDA - I²S - 1 x Enhanced Universal Asynchronous Receiver / Transmitter (EUART) - 2×I2C interface with SMBus support - Digital microphone interface (PDM) - Precision Low-Frequency RC Oscillator enabling single-crystal operation - RFSENSE with selective OOK mode - Die temperature sensor with +/-2 degree C accuracy across temperature range - Security Features #### www.szrfstar.com - Secure Boot with Root of Trust and Secure Loader (RTSL) - Hardware Cryptographic Acceleration for AES128/256, SHA-1, SHA-2 (up to 256-bit), ECC (up to 256-bit), ECDSA, and ECDH - True Random Number Generator (TRNG) compliant with NIST SP800-90 and AIS-31 - ARM® TrustZone® - Secure Debug with lock / unlock - Transmission range: - RF-BM-BG22A1: 70 m (@ PCB antenna) - RF-BM-BG22A1I: 120 m (@ external PCB antenna) - Dimension: 16.5 mm x 11.6 mm x 2.06 mm - RF-BM-BG22A1 Certificates: - FCC - CE - SRRC - RoHS #### 1.3 Applications - · Asset tags and beacons - Consumer electronics remote controls - Portable medical - Sports, fitness and wellness devices - Connected home - · Building automation and security # 1.4 Functional Block Diagram DC-DC mode: 2.2 V to 3.8 V Bypass mode: 1.8 V to 3.8 V Figure 1. Functional Block Diagram of RF-BM-BG22A1(I) #### 1.5 Part Number Conventions The part numbers are of the form of RF-BM-BG22A1(I) where the fields are defined as follows: Figure 2. Part Number Conventions of RF-BM-BG22A1(I) # **Table of Contents** | Silicon Labs BLE Module List | 1 | |-----------------------------------------------------------------------|----| | 1 Device Overview | 3 | | 1.1 Description | 3 | | 1.2 Key Features | 3 | | 1.3 Applications | 4 | | 1.4 Functional Block Diagram | 4 | | 1.5 Part Number Conventions | 5 | | Table of Contents | 6 | | Table of Figures | 7 | | Table of Tables | 8 | | 2 Module Configuration and Functions | 9 | | 2.1 Module Parameters | 9 | | 2.2 Module Pin Diagram | 10 | | 2.3 Pin F <mark>u</mark> nctions | 10 | | 3 Specifications | 12 | | 3.1 Reco <mark>mmended Operatin</mark> g Conditions | 12 | | 3.2 Handling Ratings | 12 | | 3.3 Current Consumption | 12 | | 4 Setting of Frequency Offset Register | 14 | | 5 Application, Implementation, and Layout | 16 | | 5.1 Module Photos | 16 | | 5.2 Recommended PCB Footprint | 16 | | 5.3 Schematic Diagram | 18 | | 5.4 Antenna | 18 | | 5.4.1 Antenna Design Recommendation | 18 | | 5.4.2 Antenna Output Mode Modification | 19 | | 5.4.3 External Antenna Design Recommendation of the Half-Hole ANT Pin | 20 | | 5.4.4 IPEX Connector Specification | 21 | | 5.5 Basic Operation of Hardware Design | | | 5.6 Trouble Shooting | | | | 5.6.1 Unsatisfactory Transmission Distance | 23 | |-----|-------------------------------------------------------------|----| | | 5.6.2 Vulnerable Module | 23 | | | 5.6.3 High Bit Error Rate | 23 | | | 5.7 Electrostatics Discharge Warnings | 24 | | | 5.8 Soldering and Reflow Condition | 24 | | | 5.9 Optional Package Specification | 26 | | 6 (| Certification | 28 | | | 6.1 FCC | 28 | | | 6.2 CE | 28 | | | 6.3 SRRC | 29 | | | 6.4 RoHS | 29 | | 7 I | Revision History | 30 | | 8 (| Contact Us | 31 | | | | | | | | | | | Table of Figures | | | | E' | | | | Figure 1. Functional Block Diagram of RF-BM-BG22A1(I) | | | | Figure 2. Part Number Conventions of RF-BM-BG22A1(I) | | | | Figure 3. Pin Diagram of RF-BM-BG22A1(I) | | | | Figure 4. Photos of RF-BM-BG22A1(I) | | | | Figure 5. Recommended PCB Footprint of RF-BM-BG22A1(I) (mm) | | | | Figure 6. Schematic Diagram of RF-BM-BG22A1(I) | | | | Figure 7. Recommendation of Antenna Layout | | | | Figure 8. Antenna Output Mode Change of RF-BM-BG22A1 | | | | Figure 9. Antenna Output Mode Change of RF-BM-BG22A1I | | | | Figure 10. Reference Design of the External Antenna | | | | Figure 11. Reference Design of the External Antenna Traces | 20 | | | Figure 12. SI9000 Impedance Calculation Diagram | 21 | | | Figure 13. Specification of Antenna Seat | 21 | | | Figure 14. Specification of IPEX Wire | 22 | | | Figure 15. Recommended Reflow for Lead-Free Solder | 25 | | | Figure 16. Default Package by Tray | 26 | | | Figure 17. Package by Tape & Reel | 27 | | Figure 18 | 8. FCC certificate of RF-BM-BG22A1 | 28 | |-----------|------------------------------------|----| | Ü | | 20 | | Figure 18 | 9. CE certificate of RF-BM-BG22A1 | 28 | # **Table of Tables** | Table 1. Parameters of RF-BM-BG22A1(I) | 9 | |--------------------------------------------------------------|----| | Table 2. Pin Functions of RF-BM-BG22A1(I) | 10 | | Table 3. Recommended Operating Conditions of RF-BM-BG22A1(I) | 12 | | Table 4. Handling Ratings of RF-BM-BG22A1(I) | 12 | | Table 5. Current Consumption of RF-BM-BG22A1(I) | 12 | | Table 6. Temperature Table of Soldering and Reflow | 24 | # 2 Module Configuration and Functions # 2.1 Module Parameters Table 1. Parameters of RF-BM-BG22A1(I) | Chipset | EFR32BG22C112F352GM32-C | | | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|--| | Chipset | | | | | | | Supply Power Voltage | DC-DC mode: 2.2 V ~ 3.8 V, recommended to 3.3 V | | | | | | Cupply Const Consign | Bypass mode: 1.8 V ~ 3.8 V, recommended to 3.3 V | | | | | | Frequency | 2402 MHz ~ 2480 MHz | | | | | | Transmit Power | -28.0 dBm ~ 0 dBm (typical: 0 dBm) | | | | | | Receiving Sensitivity | -98.9 dBm sensitivity @ 1 Mbit/s GFSK | | | | | | Treeserving censilivity | -96.2 dBm sensitivity @ 2 Mbit/s GFSK | | | | | | GPIO | 18 | | | | | | Crystal | 38.4 MHz | | | | | | RAM | 32 KB | | | | | | Flash | 352 KB | | | | | | Package | SMT Packaging (1.27-mm half-hole pitch stamp stick) | | | | | | Frequency Error | ±24 kHz | | | | | | Dimension | 16.5 mm x 11.6 mm x 2.06 mm | | | | | | Type of Antonna | RF-BM-BG22A1: PCB antenna, half-hole ANT pin | | | | | | Type of Antenna | RF-BM-BG22A1I: IPEX connector, half-hole ANT pin | | | | | | Transmission Range in Open Air | RF-BM-BG22A1: 70 m (@ PCB antenna) | | | | | | The state of s | RF-BM-BG22A1I: 120 m (@ external PCB antenna) | | | | | | Operating Temperature | -40 ℃ ~ +85 ℃ | | | | | | Storage Temperature | -40 °C ~ +125 °C | | | | | # 2.2 Module Pin Diagram Figure 3. Pin Diagram of RF-BM-BG22A1(I) # 2.3 Pin Functions Table 2. Pin Functions of RF-BM-BG22A1(I) | Pin | Name | Chip Pin | Pin Type | Description | |-----|---------|----------|----------|-----------------------| | 1 | EXT_ANT | - | - | External antenna pin. | | 2 | PB02 | PB02 | I/O | GPIO | | 3 | PB01 | PB01 | I/O | GPIO | | 4 | PB00 | PB00 | I/O | GPIO | | 5 | PA00 | PA00 | - | GPIO | | 6 | PA03 | PA03 | I/O | GPIO | | 7 | PA04 | PA04 | I/O | GPIO | | 8 | PA05 | PA05 | I/O | GPIO | | 9 | PA06 | PA06 | I/O | GPIO | | 10 | GND | GND | - | Ground | www.szrfstar.com | 11 | RESET | RESET | - | Reset, active low, internal pull-up. The max. power supply of this pin is 1.8 V under DC-DC mode. | |----|-------|-------|-----|---------------------------------------------------------------------------------------------------| | 12 | PA01 | PA01 | I/O | GPIO/SWCLK (connect j-link) | | 13 | PA02 | PA02 | I/O | GPIO/SWDIO (connect j-link) | | 14 | GND | GND | - | Ground | | 15 | VCC | VCC | VCC | 2.2 V ~ 3.8 V, recommended to 3.3 V | | 16 | PD01 | PD01 | I/O | GPIO | | 17 | PD00 | PD00 | I/O | GPIO | | 18 | PC00 | PC00 | I/O | GPIO | | 19 | PC01 | PC01 | I/O | GPIO | | 20 | PC02 | PC02 | I/O | GPIO | | 21 | PC03 | PC03 | I/O | GPIO | | 22 | PC04 | PC04 | I/O | GPIO | | 23 | PC05 | PC05 | I/O | GPIO | | 24 | GND | GND | | Ground | # 3 Specifications # 3.1 Recommended Operating Conditions The functional operation does not guarantee performance beyond the limits of the conditional parameter values in the table below. Long-term work beyond this limit will affect the reliability of the module more or less. Table 3. Recommended Operating Conditions of RF-BM-BG22A1(I) | Items | Condition | Min. | Тур. | Max. | Unit | |----------------------------|-------------|------|------|------|--------------| | Operating Supply Voltage | DC-DC mode | 2.2 | 3.3 | 3.8 | V | | Operating Supply Voltage | Bypass mode | 1.8 | 3.3 | 3.8 | V | | Frequency Range | | 2402 | | 2480 | MHz | | Operating Temperature | 1 | -40 | +25 | +85 | \mathbb{C} | | Environmental Hot Pendulum | 1 | -20 | | +20 | °C/min | # 3.2 Handling Ratings All measurements are based on the Silicon Labs reference design and datasheet. Table 4. Handling Ratings of RF-BM-BG22A1(I) | Items | Condition | Min. | Тур. | Max. | Unit | |----------------------------|-----------|------|-------|------|------------| | Storage Temperature | Tstg | -40 | +25 | +125 | $^{\circ}$ | | Human Body Model | НВМ | | ±2000 | | V | | Moisture Sensitivity Level | | | 2 | | | | Charged Device Model | | | ±500 | | V | # 3.3 Current Consumption Table 5. Current Consumption of RF-BM-BG22A1(I) | Hardware Version: 1.0a | | | | | | | |--------------------------|----------------------------------------------------------------------------------------------|----------------------------|----------------|--|--|--| | Test Date | May 14 ^{th,} 2020 | May 14 ^{th,} 2020 | | | | | | Test Condition | FLUKE15B+ multimeter, load connects to DSA1030 spectrum analyzer, offset: 0.2, RBW = 100 KHz | | | | | | | Stand-by | 1 μΑ | | | | | | | Transmitting Current | Set Tx Power | Actual Tx Power | Actual Current | | | | | Transmitting Current | 0 dBm -0.5 dBm 4.0 mA | | | | | | | Receiving Current 2.5 mA | | | | | | | www.szrfstar.com Note: The test method is closely related to the current. For example, the output load antenna is different from the standard 50 Ω test data. # 4 Setting of Frequency Offset Register The setting of the frequency offset register can be regarded as the auxiliary setting of modifying the frequency offset for the hardware RF part. If the frequency offset is needed to be modified, you can find the **sl_device_init_hfxo_config.h** file in the corresponding project and modify the **CTUNE** value. Take the **empty_RGB** project as an example: Oen the project, find the Project Explorer window, and open the project folder, as shown in the following figure. Then choose the config folder, find the **sl_device_init_hfxo_config.h** file, and double-click to open it, as shown in the figure below. ``` ₩ ▼ : 📂 : 🥒 : 🎹 weicome 🙂 kecent 🎹 i oois 🝱 instail 🦊 Preferences Isl_device_init_hfxo_config.h ⋈ Soc_empty_RGB [IAR ARM - Default] [EFR32BG2 #ifndef SL DEVICE INIT HFXO CONFIG H #define SL_DEVICE_INIT_HFXO_CONFIG_H > & Binaries > 🔊 Includes // <<< Use Configuration Wizard in Context Menu >>> autoger v 🗁 config 6⊕// <o SL_DEVICE_INIT_HFXO_MODE> Mode btconf > h app assert config.h // <cmuHfxoOscMode_Crystal=> Crystal oscillator dmadrv_config.h // <cmuHfxoOscMode_ExternalSine=> External sine wave // <i> Default: cmuHfxoOscMode_Crystal emlib_core_debug_config.h 11 #define SL_DEVICE_INIT_HFXO_MODE cmuHfxoOscMode Crystal > là mbedtls config.h > h nvm3_default_config.h pin_config.h #define SL_DEVICE_INIT_HFXO_FREQ > 🖟 sl_bluetooth_advertiser_config.h - 7⊖// <o SL_DEVICE_INIT_HFXO_CTUNE> CTUNE <0-255> la sl bluetooth config.h sl_bluetooth_connection_config.h #define SL_DEVICE_INIT_HFXO_CTUNE sl_device_init_dcdc_config.h sl_device_init_emu_config.h // <<< end of configuration section >>> > 🖪 sl device init hfxo config.h is sl_device_init_lfrco_config.h #endif // SL DEVICE INIT HFXO CONFIG H la sl_hfxo_manager_config.h sl_memory_config.h sl_power_manager_config.h sl_rail_util_pa_config.h sl_rail_util_pti_config.h sl_simple_button_config.h ``` Find **SL_DEVICE_INIT_HFXO_CTUNE**, the official default value of SiliconLabs is 140, RF-star changes it to 72 according to the requirements of the development board hardware RF part. Remark: This is the value for RF-star's standard EFR32BG22 series modules, the value of the other customized products needs to be confirmed. If the user needs to change to other values, you can directly modify it (Value range: 0 ~ 255). As shown below. ```) sl_device_init_hfxo_config.h ⊠ 1 #ifndef SL_DEVICE_INIT_HFXO_CONFIG_H 2 #define SL_DEVICE_INIT_HFXO_CONFIG_H 4 // <<< Use Configuration Wizard in Context Menu >>> 6⊖// <o SL_DEVICE_INIT_HFXO_MODE> Mode 7 // <i> 8 // <cmuHfxoOscMode_Crystal=> Crystal oscillator 9 // <cmuHfxoOscMode_ExternalSine=> External sine wave 10 // <i> Default: cmuHfxoOscMode Crystal 11 #define SL_DEVICE_INIT_HFXO_MODE cmuHfxoOscMode Crystal 12 139 // <o SL DEVICE INIT HFXO FREQ> Frequency <38000000-400000000> 14 // <i> Default: 38400000 38400000 15 #define SL_DEVICE_INIT_HFXO_FREQ 17⊕ // <o SL_DEVICE_INIT_HFXO_CTUNE> CTUNE <0-255> // <i> Default: 140 18 19 #define SL_DEVICE_INIT_HFXO_CTUNE 20 21 // <<< end of configuration section >>> 22 #endif // SL_DEVICE_INIT_HFXO_CONFIG_H 23 24 ``` # 5 Application, Implementation, and Layout #### **5.1 Module Photos** Figure 4. Photos of RF-BM-BG22A1(I) # **5.2 Recommended PCB Footprint** RF-BM-BG22A1 RF-BM-BG22A1I Figure 5. Recommended PCB Footprint of RF-BM-BG22A1(I) (mm) # 5.3 Schematic Diagram Figure 6. Schematic Diagram of RF-BM-BG22A1(I) # 5.4 Antenna # 5.4.1 Antenna Design Recommendation 1. The antenna installation structure has a great influence on the module performance. It is necessary to ensure the antenna is exposed and preferably vertically upward. When the module is installed inside of the case, a high-quality antenna extension wire can be used to extend the antenna to the outside of the case. - The antenna must not be installed inside the metal case, which will cause the transmission distance to be greatly weakened. - 3. The recommendation of antenna layout. The inverted-F antenna position on PCB is free-space electromagnetic radiation. The location and layout of the antenna are key factors to increase the data rate and transmission range. Therefore, the layout of the module antenna location and routing is recommended as follows: - (1) Place the antenna on the edge (corner) of the PCB. - (2) Make sure that there is no signal line or copper foil in each layer below the antenna. - (3) It is best to hollow out the antenna position in the following figure to ensure that the S11 of the module is minimally affected. Figure 7. Recommendation of Antenna Layout Note: The hollow-out position is based on the antenna used. #### **5.4.2 Antenna Output Mode Modification** 1. RF-BM-BG22A1 has two antenna output modes. The one is an onboard PCB antenna and the other is a stamp half-hole output (ANT pin, see pin function table for details). The default delivery is the **onboard PCB antenna**, and R1 (0 Ω) is well welded. If you want to use the external antenna by the ANT pin, pls disconnect the R1. The location of R1 is shown in the figure below. Figure 8. Antenna Output Mode Change of RF-BM-BG22A1 2. RF-BM-BG22A1I has two antenna output modes. The one is an IPEX connector and the other is a stamp half-hole output (ANT pin, see pin function table for details). The default delivery is the **IPEX connector**, and the capacitor connected to the IPEX is welded. If you want to use the external antenna by the ANT pin, the capacitor position should be removed to the left solder joint to have the access to the ANT pin. The location of the capacitor is shown in the figure below. Figure 9. Antenna Output Mode Change of RF-BM-BG22A1I ## 5.4.3 External Antenna Design Recommendation of the Half-Hole ANT Pin 1. A Π -type matching circuit is reserved for the antenna, and 50 Ω impedance control is performed on the RF traces. The traces are as short as possible, and 135° or arc traces are used as much as possible. No vias are used to change layers. More GND vias are placed around the RF traces. Figure 10. Reference Design of the External Antenna Figure 11. Reference Design of the External Antenna Traces www.szrfstar.com 2. The RF trace width and copper-clad spacing can be calculated by SI9000 software, and the impedance is controlled to 50 Ω according to the actual board thickness, number of layers, plate, dielectric thickness, dielectric constant, copper thickness, line width, line spacing, and solder mask thickness. Example: FR4 is a double-layer board with a thickness of 1.0 mm. Through calculation, the width of the trace is 0.8254 mm, and the spacing between traces and copper is 0.22 mm. Figure 12. SI9000 Impedance Calculation Diagram # 5.4.4 IPEX Connector Specification RF-BM-BG22A1I module is integrated the IPEX version 1 antenna seat, the specification of the antenna seat is as follows: Figure 13. Specification of Antenna Seat The specification of the IPEX wire end is as follows: Figure 14. Specification of IPEX Wire #### 5.5 Basic Operation of Hardware Design - 1. It is recommended to offer the module a DC stabilized power supply, a tiny power supply ripple coefficient, and reliable ground. Please pay attention to the correct connection between the positive and negative poles of the power supply. Otherwise, the reverse connection may cause permanent damage to the module. - Please ensure the supply voltage is between the recommended values. The module will be permanently damaged if the voltage exceeds the maximum value. Please ensure a stable power supply and no frequently fluctuating voltage. - 3. When designing the power supply circuit for the module, it is recommended to reserve more than 30% of the margin, which is beneficial to the long-term stable operation of the whole machine. The module should be far away from the power electromagnetic, transformer, high-frequency wiring, and other parts with large electromagnetic interference. - 4. The bottom of the module should avoid high-frequency digital routing, high-frequency analog routing, and power routing. If it has to route the wire on the bottom of the module, for example, it is assumed that the module is soldered to the Top Layer, the copper must be spread on the connection part of the top layer and the module, and be close to the digital part of the module and routed in the Bottom Layer (all copper is well-grounded). - 5. Assuming that the module is soldered or placed in the Top Layer, it is also wrong to randomly route the Bottom Layer or other layers, which will affect the spurs and receiving sensitivity of the module to some degree. - 6. Assuming that there are devices with large electromagnetic interference around the module, which will greatly affect the module performance. It is recommended to stay away from the module according to the strength of the interference. If circumstances permit, appropriate isolation and shielding can be done. - 7. Assuming that there are routings of large electromagnetic interference around the module (high-frequency digital, high-frequency analog, power routings), which will also greatly affect the module performance. It is recommended to stay away from the module according to the strength of the interference. If circumstances permit, appropriate isolation and shielding can be done. - It is recommended to stay away from the devices whose TTL protocol is the same 2.4 GHz physical layer, for example, USB 3.0. #### 5.6 Trouble Shooting # 5.6.1 Unsatisfactory Transmission Distance - When there is a linear communication obstacle, the communication distance will be correspondingly weakened. Temperature, humidity, and co-channel interference will lead to an increase in the communication packet loss rate. The performances of ground absorption and reflection of radio waves will be poor when the module is tested close to the ground. - 2. Seawater has a strong ability to absorb radio waves, so the test results by the seaside are poor. - 3. The signal attenuation will be very obvious if there is metal near the antenna or if the module is placed inside the metal shell. - 4. The incorrect power register set or the high data rate in the open air may shorten the communication distance. The higher the data rate, the closer the distance. - 5. The low voltage of the power supply is lower than the recommended value at ambient temperature, and the lower the voltage, the smaller the power is. - 6. The unmatchable antennas and modules or the poor quality of antenna will affect the communication distance. #### 5.6.2 Vulnerable Module - Please ensure the supply voltage is between the recommended values. The module will be permanently damaged if the voltage exceeds the maximum value. Please ensure a stable power supply and no frequently fluctuating voltage. - Please ensure the anti-static installation and the electrostatic sensitivity of high-frequency devices. - 3. Due to some humidity-sensitive components, please ensure the suitable humidity during installation and application. If there is no special demand, it is not recommended to use at too high or too low temperature. #### 5.6.3 High Bit Error Rate - 1. There are co-channel signal interferences nearby. It is recommended to be away from the interference sources or modify the frequency and channel to avoid interferences. - 2. The unsatisfactory power supply may also cause garbled. It is necessary to ensure the power supply's reliability. 3. If the extension wire or feeder wire is of poor quality or too long, the bit error rate will be high. #### 5.7 Electrostatics Discharge Warnings The module will be damaged by the discharge of static. RF-star suggests that all modules should follow the 3 precautions below: - 1. According to the anti-static measures, bare hands are not allowed to touch modules. - 2. Modules must be placed in anti-static areas. - 3. Take the anti-static circuitry (when inputting HV or VHF) into consideration in product design. Static may result in the degradation in performance of the module, even causing failure. # 5.8 Soldering and Reflow Condition - 1. Heating method: Conventional Convection or IR/convection. - 2. Solder paste composition: Sn96.5/Ag3.0/Cu0.5 - 3. Allowable reflow soldering times: 2 times based on the following reflow soldering profile. - 4. Temperature profile: Reflow soldering shall be done according to the following temperature profile. - 5. Peak temperature: 245 °C. Table 6. Temperature Table of Soldering and Reflow | Profile Feature | Sn-Pb Assembly | Pb-Free Assembly | |---------------------------------------------------------------------------|----------------|------------------------| | Solder Paste | Sn63 / Pb37 | Sn96.5 / Ag3.0 / Cu0.5 | | Min. Preheating Temperature (T _{min}) | 100 ℃ | 150 ℃ | | Max. Preheating Temperature (T _{max}) | 150 ℃ | 200 ℃ | | Preheating Time (T _{min} to T _{max}) (t ₁) | 60 s ~ 120 s | 60 s ~ 120 s | | Average Ascend Rate (T _{max} to T _p) | Max. 3 ℃/s | Max. 3 °C/s | | Liquid Temperature (T _L) | 183 ℃ | 217 ℃ | | Time above Liquidus (t _L) | 60 s ~ 90 s | 30 s ~ 90 s | | Peak Temperature (T _p) | 220 ℃ ~235 ℃ | 230 ℃ ~250 ℃ | | Average Descend Rate (Tp to Tmax) | Max. 6 °C/s | Max. 6 °C/s | | Time from 25 ℃ to Peak Temperature (t₂) | Max. 6 minutes | Max. 8 minutes | | Time of Soldering Zone (t _P) | 20±10 s | 20±10 s | Figure 15. Recommended Reflow for Lead-Free Solder # 5.9 Optional Package Specification The default package method is **by tray**. If you need the modules to be shipped by tape & reel, pls contact us in advance. Figure 16. Default Package by Tray Figure 17. Package by Tape & Reel # **6 Certification** #### **6.1 FCC** This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. #### FCC ID: 2ABN2-BG22A1 Figure 18. FCC certificate of RF-BM-BG22A1 #### 6.2 CE Figure 19. CE certificate of RF-BM-BG22A1 # **6.3 SRRC** # SRRC CMIIT ID: 2021DP8455 Figure 20. SRRC certificate of RF-BM-BG22A1 #### **6.4 RoHS** Figure 21. RoHS certificate of RF-BM-BG22A1 # 7 Revision History | Date | Version No. | Description | |------------|-------------|--------------------------------------------------------------------------------------------------| | 2020.09.10 | V1.0 | The initial version is released. | | 2021.01.21 | V1.1 | Update the unit of Flash. | | 2022.05.12 | V1.2 | Modify the power supply. Add the antenna specifications. Add the RF-BM-BG22A1I specifications. | | 2022.08.12 | V1.3 | Add the setting of frequency offset register. Add the max. power supply of the RESET pin. | #### Note: - 1. The document will be optimized and updated from time to time. Before using this document, please make sure it is the latest version. - 2. To obtain the latest document, please download it from the official website: www.szrfstar.com and www.szrfstar.com. ## **8 Contact Us** # SHENZHEN RF-STAR TECHNOLOGY CO., LTD. #### Shenzhen HQ: Add.: C601, Skyworth Building, High-tech Park, Nanshan District, Shenzhen, Guangdong, China, 518057 Tel.: 86-755-3695 3756 #### Chengdu Branch: Add.: N2-1604, Global Center, North No. 1700, Tianfu Avenue, Hi-Tech District, Chengdu, Sichuan, China, 610095 Tel.: 86-28-6577 5970 Email: sunny@szrfstar.com, sales@szrfstar.com Web.: www.rfstariot.com, www.szrfstar.com