RF-BM-2651B1 CC2651R3 SimpleLink™ Single-protocol 2.4 GHz Wireless Module Version 1.0 Shenzhen RF-star Technology Co., Ltd. May. 25th, 2023 All rights reserved. Those responsible for unauthorized reproduction will be prosecuted. #### 1 Device Overview #### 1.1 Description RF-BM-2651B1 is an RF module based on TI lower-power CC2651R3 SoC. It integrates a 48 MHz crystal and a 32.768 kHz crystal, 352 KB of in-system Programmable Flash, 8 KB of Cache SRAM, and 32 KB of ultra-low leakage SRAM. Its ARM® Cortex®-M4 core application processor can operate at an extremely low current at flexible power modes. Its single-protocol 2.4 GHz RF transceiver is compatible with Bluetooth 5.3 Low Energy, ZigBee, SimpleLink TI 15.4-stack and Proprietary. It features a small size, robust connection distance, and rigid reliability. #### 1.2 Key Features - RF Features - Zigbee® - Bluetooth® 5.3 Low Energy - SimpleLink™ TI 15.4-stack - Proprietary systems - Modulation - 2-(G)FSK - 4-(G)FSK - MSK - TX power: up to +5 dBm with temperature compensation - RF sensitivity - -100 dBm for 802.15.4 (2.4 GHz) - -104 dBm for Bluetooth 125 kbps (LE coded PHY) - Microcontroller - Powerful 48 MHz ARM® Cortex®-M4 processor - EEBMC CoreMark® score: 148 - 2-pin cJTAG and JTAG debugging - Support OTA upgrade - Memory - 352 KB of in-system programmable flash - 8 KB of cache SRAM - 32 KB of ultra-low leakage SRAM - Wide Operation Range - Power supply: 1.8 V to 3.8 V - Operating temperature: -40 °C to +85 °C - Storage temperature: -40 °C to +125 °C - Wide Peripherals - Up to 31 GPIOs, digital peripherals can be routed to any GPIO - Four 32-bit or eight 16-bit general-purpose timers - 12-bit ADC, 200 kSamples/s, 8 channels - 8-bit DAC - Analog Comparator - UART, SSI, I2C, I2S - Real-time clock (RTC) - Integrated temperature and battery monitor - Security Enablers - AES 128 and 256 bit Crypto accelerator - True random number generator (TRNG) - Additional cryptography drivers available in Software Development Kit (SDK) - Dimension: 22.5 mm × 15.55 mm × 2.1 mm #### 1.3 Applications - · Home and building automation - Smart grid and automatic meter reading - Wireless sensor networks - Factory automation - Wireless healthcare applications - Energy harvesting applications Asset tracking and management • Electronic Shelf Label (ESL) #### 1.4 Functional Block Diagram Figure 1. Functional Block Diagram of RF-BM-2651B1 #### 1.6 Part Number Conventions The part numbers are of the form of RF-BM-2651B1 where the fields are defined as follows: Figure 2. Part Number Conventions of RF-BM-2651B1 # **Table of Contents** | 1 Device Overview | 2 | |--------------------------------------------|----| | 1.1 Description | 2 | | 1.2 Key Features | 2 | | 1.3 Applications | 2 | | 1.4 Functional Block Diagram | 3 | | 1.6 Part Number Conventions | 3 | | Table of Contents | 4 | | 2 Module Configuration and Functions | 5 | | 2.1 Module Parameters | 5 | | 2.2 Module Pin Diagram | 6 | | 2.3 Pin Functions | 6 | | 3 Specifications | 8 | | 3.1 Recommended Operating Conditions | | | 3.2 Handling Ratings | 8 | | 4 Application, Implementation, and Layout | 9 | | 4.1 Mod <mark>ule</mark> Photos | 9 | | 4.2 Recommended PCB Footprint | 9 | | 4.3 Schematic Diagram | 10 | | 4.4 Reference Design | 11 | | 4.5 Antenna | 11 | | 4.5.1 Antenna Design Recommendation | 11 | | 4.6 Basic Operation of Hardware Design | 12 | | 4.7 Trouble Shooting | 13 | | 4.7.1 Unsatisfactory Transmission Distance | 13 | | 4.7.2 Vulnerable Module | 13 | | 4.7.3 High Bit Error Rate | 13 | | 4.8 Electrostatics Discharge Warnings | 14 | | 4.9 Soldering and Reflow Condition | 14 | | 5 Optional Package Specification | 16 | | 6 Revision History | 18 | | 7 Contact Us | 19 | # 2 Module Configuration and Functions # 2.1 Module Parameters Table 1. Parameters of RF-BM-2651B1 | Chipset | CC2651R3 | |------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------| | Supply Power Voltage | 1.8 V ~ 3.8 V, 3.3 V is recommended | | Frequency | 2402 MHz ~ 2480 MHz | | Maximum Transmit Power | +5.0 dBm | | Receiving Sensitivity | -100 dBm @ 802.15.4 (2.4 GHz) | | Receiving Sensitivity | -104 dBm @ Bluetooth 125 kbps (LE Coded PHY) | | GPIO | 23 | | Flash | 352 KB | | ROM | 256 KB | | SRAM | 88 KB | | Power Consumption | RX current: 6.4 mA TX current: 7.1 mA @ 0 dBm 9.5 mA @ 5 dBm MCU 48 MHz (CoreMark): 2.91 mA (61 µA/MHz) Standby: 0.8 µA Shutdown: 0.1 µA | | Support Protocol | Bluetooth 5.3 Low Energy, ZigBee, SimpleLink TI 15.4-stack, Proprietary | | Crystal | 48 MHz, 32.768 kHz | | Package | SMT packaging (1.27-mm half-hole pitch stamp stick) | | Dimension | 22.5 mm × 15.55 mm × 2.1 mm | | Type of Antenna | PCB antenna | | Operating Temperature | -40 °C ~ +85 °C | | Storage Temperature | -40 °C ~ +125 °C | # 2.2 Module Pin Diagram Figure 3. Pin Diagram of RF-BM-2651B1 # 2.3 Pin Functions Table 2. Pin Functions of RF-BM-2651B1 | Pin | Name | Chip Pin | Function | Description | |-----|------|----------|----------|-----------------------------| | 1 | P0 | DIO_0 | Digital | GPIO | | 2 | P1 | DIO_1 | Digital | GPIO | | 3 | P2 | DIO_2 | Digital | GPIO | | 4 | P3 | DIO_3 | Digital | GPIO | | 5 | P4 | DIO_4 | Digital | GPIO | | 6 | P5 | DIO_5 | Digital | GPIO, high-drive capability | | 7 | P6 | DIO_6 | Digital | GPIO, high-drive capability | | 8 | P7 | DIO_7 | Digital | GPIO, high-drive capability | | 9 | P8 | DIO_8 | Digital | GPIO | | 10 | P9 | DIO_9 | Digital | GPIO | www.szrfstar.com | 11 P10 DIO_10 Digital GPIO, JTAG_TDO, high-drive capability 12 VCC VCC Power supply: 1.8 V ~ 3.8 V, recommend to 3.3 V 13 GND Ground Ground Ground 14 RES RES Reset. Active pin. 15 TMS JTAG_TMSC Digital JTAG TMSC, high-drive capability 16 TCK JTAG_TCKC Digital GPIO, JTAG_TDI, high-drive capability 17 P11 DIO_11 Digital GPIO, JTAG_TDI, high-drive capability 18 P12 DIO_12 Digital GPIO 19 P13 DIO_13 Digital GPIO 20 NC ONC ONC 21 NC ONC ONC 22 P14 DIO_14 Digital or Analog GPIO, analog capability 24 P16 DIO_15 Digital or Analog GPIO, analog capability 25 P17 DIO_17 Digital or Analog GPIO, analog capability 26 P18 <th></th> <th></th> <th></th> <th></th> <th></th> | | | | | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----------|-------------------|-------------------------------------------------| | GND Ground Ground Ground RES RES RES Reset. Active pin. TMS JTAG_TMSC Digital JTAG TMSC, high-drive capability TCK JTAG_TCKC Digital JTAG TCKC TOR P11 DIO_11 Digital GPIO, JTAG_TDI, high-drive capability BP12 DIO_12 Digital GPIO P13 DIO_13 Digital GPIO NC DIGITAL DIGITAL GPIO NC DIGITAL GPIO NC DIGITAL GPIO P14 DIO_14 Digital GPIO P15 DIO_15 Digital or Analog GPIO, analog capability P16 DIO_16 Digital or Analog GPIO, analog capability P17 DIO_17 Digital or Analog GPIO, analog capability P18 DIO_18 Digital or Analog GPIO, analog capability P19 DIO_19 Digital or Analog GPIO, analog capability P19 DIO_19 Digital or Analog GPIO, analog capability P19 DIO_19 Digital or Analog GPIO, analog capability P19 DIO_20 Digital or Analog GPIO, analog capability GPIO, analog capability P19 DIO_21 Digital or Analog GPIO, analog capability | 11 | P10 | DIO_10 | Digital | GPIO, JTAG_TDO, high-drive capability | | 14 RES RES RES Reset. Active pin. 15 TMS JTAG_TMSC Digital JTAG TMSC, high-drive capability 16 TCK JTAG_TCKC Digital JTAG TCKC 17 P11 DIO_11 Digital GPIO, JTAG_TDI, high-drive capability 18 P12 DIO_12 Digital GPIO 19 P13 DIO_13 Digital GPIO 20 NC 21 NC 22 P14 DIO_14 Digital GPIO 23 P15 DIO_15 Digital or Analog GPIO, analog capability 24 P16 DIO_16 Digital or Analog GPIO, analog capability 25 P17 DIO_17 Digital or Analog GPIO, analog capability 26 P18 DIO_18 Digital or Analog GPIO, analog capability 27 P19 DIO_19 Digital or Analog GPIO, analog capability 28 P20 DIO_20 Digital or Analog GPIO, analog capability 29 P21 DIO_21 Digital or Analog GPIO, analog capability | 12 | VCC | VCC | | Power supply: 1.8 V ~ 3.8 V, recommend to 3.3 V | | TMS JTAG_TMSC Digital JTAG TMSC, high-drive capability 16 TCK JTAG_TCKC Digital JTAG TCKC 17 P11 DIO_11 Digital GPIO, JTAG_TDI, high-drive capability 18 P12 DIO_12 Digital GPIO 19 P13 DIO_13 Digital GPIO 20 NC DIO_14 Digital GPIO 21 NC GPIO GPIO, analog capability 22 P14 DIO_15 Digital or Analog GPIO, analog capability 24 P16 DIO_16 Digital or Analog GPIO, analog capability 25 P17 DIO_17 Digital or Analog GPIO, analog capability 26 P18 DIO_18 Digital or Analog GPIO, analog capability 27 P19 DIO_19 Digital or Analog GPIO, analog capability 28 P20 DIO_20 Digital or Analog GPIO, analog capability 29 P21 DIO_21 Digital or Analog GPIO, analog capability GPIO, analog capability GPIO, analog capability GPIO, analog capability | 13 | GND | Ground | Ground | Ground | | 16 TCK JTAG_TCKC Digital JTAG TCKC 17 P11 DIO_11 Digital GPIO, JTAG_TDI, high-drive capability 18 P12 DIO_12 Digital GPIO 19 P13 DIO_13 Digital GPIO 20 NC 21 NC 22 P14 DIO_14 Digital GPIO 23 P15 DIO_15 Digital or Analog GPIO, analog capability 24 P16 DIO_16 Digital or Analog GPIO, analog capability 25 P17 DIO_17 Digital or Analog GPIO, analog capability 26 P18 DIO_18 Digital or Analog GPIO, analog capability 27 P19 DIO_19 Digital or Analog GPIO, analog capability 28 P20 DIO_20 Digital or Analog GPIO, analog capability 29 P21 DIO_21 Digital or Analog GPIO, analog capability | 14 | RES | RES | | Reset. Active pin. | | 17 P11 DIO_11 Digital GPIO, JTAG_TDI, high-drive capability 18 P12 DIO_12 Digital GPIO 19 P13 DIO_13 Digital GPIO 20 NC 21 NC 22 P14 DIO_14 Digital GPIO 23 P15 DIO_15 Digital or Analog GPIO, analog capability 24 P16 DIO_16 Digital or Analog GPIO, analog capability 25 P17 DIO_17 Digital or Analog GPIO, analog capability 26 P18 DIO_18 Digital or Analog GPIO, analog capability 27 P19 DIO_19 Digital or Analog GPIO, analog capability 28 P20 DIO_20 Digital or Analog GPIO, analog capability 29 P21 DIO_21 Digital or Analog GPIO, analog capability | 15 | TMS | JTAG_TMSC | Digital | JTAG TMSC, high-drive capability | | 18 P12 DIO_12 Digital GPIO 19 P13 DIO_13 Digital GPIO 20 NC 21 NC 22 P14 DIO_14 Digital GPIO 23 P15 DIO_15 Digital or Analog GPIO, analog capability 24 P16 DIO_16 Digital or Analog GPIO, analog capability 25 P17 DIO_17 Digital or Analog GPIO, analog capability 26 P18 DIO_18 Digital or Analog GPIO, analog capability 27 P19 DIO_19 Digital or Analog GPIO, analog capability 28 P20 DIO_20 Digital or Analog GPIO, analog capability 29 P21 DIO_21 Digital or Analog GPIO, analog capability | 16 | TCK | JTAG_TCKC | Digital | JTAG TCKC | | 19 P13 DIO_13 Digital GPIO 20 NC 21 NC 22 P14 DIO_14 Digital GPIO 23 P15 DIO_15 Digital or Analog GPIO, analog capability 24 P16 DIO_16 Digital or Analog GPIO, analog capability 25 P17 DIO_17 Digital or Analog GPIO, analog capability 26 P18 DIO_18 Digital or Analog GPIO, analog capability 27 P19 DIO_19 Digital or Analog GPIO, analog capability 28 P20 DIO_20 Digital or Analog GPIO, analog capability 29 P21 DIO_21 Digital or Analog GPIO, analog capability | 17 | P11 | DIO_11 | Digital | GPIO, JTAG_TDI, high-drive capability | | 20 NC 21 NC 22 P14 DIO_14 Digital GPIO 23 P15 DIO_15 Digital or Analog GPIO, analog capability 24 P16 DIO_16 Digital or Analog GPIO, analog capability 25 P17 DIO_17 Digital or Analog GPIO, analog capability 26 P18 DIO_18 Digital or Analog GPIO, analog capability 27 P19 DIO_19 Digital or Analog GPIO, analog capability 28 P20 DIO_20 Digital or Analog GPIO, analog capability 29 P21 DIO_21 Digital or Analog GPIO, analog capability | 18 | P12 | DIO_12 | Digital | GPIO | | 21NC22P14DIO_14DigitalGPIO23P15DIO_15Digital or AnalogGPIO, analog capability24P16DIO_16Digital or AnalogGPIO, analog capability25P17DIO_17Digital or AnalogGPIO, analog capability26P18DIO_18Digital or AnalogGPIO, analog capability27P19DIO_19Digital or AnalogGPIO, analog capability28P20DIO_20Digital or AnalogGPIO, analog capability29P21DIO_21Digital or AnalogGPIO, analog capability | 19 | P13 | DIO_13 | Digital | GPIO | | P14 DIO_14 Digital GPIO P15 DIO_15 Digital or Analog GPIO, analog capability P16 DIO_16 Digital or Analog GPIO, analog capability P17 DIO_17 Digital or Analog GPIO, analog capability P18 DIO_18 Digital or Analog GPIO, analog capability P19 DIO_19 Digital or Analog GPIO, analog capability P20 DIO_20 Digital or Analog GPIO, analog capability P21 DIO_21 Digital or Analog GPIO, analog capability P22 DIO_21 Digital or Analog GPIO, analog capability P23 DIO_21 Digital or Analog GPIO, analog capability | 20 | NC | | | | | P15 DIO_15 Digital or Analog GPIO, analog capability P16 DIO_16 Digital or Analog GPIO, analog capability P17 DIO_17 Digital or Analog GPIO, analog capability P18 DIO_18 Digital or Analog GPIO, analog capability P19 DIO_19 Digital or Analog GPIO, analog capability P20 DIO_20 Digital or Analog GPIO, analog capability P21 DIO_21 Digital or Analog GPIO, analog capability P22 DIO_21 Digital or Analog GPIO, analog capability P23 DIO_21 Digital or Analog GPIO, analog capability P24 DIO_21 Digital or Analog GPIO, analog capability | 21 | NC | | | | | P16 DIO_16 Digital or Analog GPIO, analog capability P17 DIO_17 Digital or Analog GPIO, analog capability P18 DIO_18 Digital or Analog GPIO, analog capability P19 DIO_19 Digital or Analog GPIO, analog capability P20 DIO_20 Digital or Analog GPIO, analog capability P21 DIO_21 Digital or Analog GPIO, analog capability P22 DIO_21 Digital or Analog GPIO, analog capability | 22 | P14 | DIO_14 | Digital | GPIO | | 25 P17 DIO_17 Digital or Analog GPIO, analog capability 26 P18 DIO_18 Digital or Analog GPIO, analog capability 27 P19 DIO_19 Digital or Analog GPIO, analog capability 28 P20 DIO_20 Digital or Analog GPIO, analog capability 29 P21 DIO_21 Digital or Analog GPIO, analog capability | 23 | P15 | DIO_15 | Digital or Analog | GPIO, analog capability | | P18 DIO_18 Digital or Analog GPIO, analog capability P19 DIO_19 Digital or Analog GPIO, analog capability P20 DIO_20 Digital or Analog GPIO, analog capability P21 DIO_21 Digital or Analog GPIO, analog capability P21 DIO_21 Digital or Analog GPIO, analog capability | 24 | P16 | DIO_16 | Digital or Analog | GPIO, analog capability | | 27 P19 DIO_19 Digital or Analog GPIO, analog capability 28 P20 DIO_20 Digital or Analog GPIO, analog capability 29 P21 DIO_21 Digital or Analog GPIO, analog capability | 25 | P17 | DIO_17 | Digital or Analog | GPIO, analog capability | | 28 P20 DIO_20 Digital or Analog GPIO, analog capability 29 P21 DIO_21 Digital or Analog GPIO, analog capability | 26 | P18 | DIO_18 | Digital or Analog | GPIO, analog capability | | 29 P21 DIO_21 Digital or Analog GPIO, analog capability | 27 | P19 | DIO_19 | Digital or Analog | GPIO, analog capability | | | 28 | P20 | DIO_20 | Digital or Analog | GPIO, analog capability | | 30 P22 DIO_22 Digital or Analog GPIO, analog capability | 29 | P21 | DIO_21 | Digital or Analog | GPIO, analog capability | | | 30 | P22 | DIO_22 | Digital or Analog | GPIO, analog capability | # 3 Specifications # 3.1 Recommended Operating Conditions The functional operation does not guarantee performance beyond the limits of the conditional parameter values in the table below. Long-term work beyond this limit will affect the reliability of the module more or less. Table 3. Recommended Operating Conditions of RF-BM-2651B1 | Items | Condition | Min. | Тур. | Max. | Unit | |--------------------------|-----------|------|------|------|--------------| | Operating Supply Voltage | 1 | 1.8 | 3.3 | 3.8 | V | | Operating Temperature | 1 | -40 | +25 | +85 | $^{\circ}$ C | # 3.2 Handling Ratings Table 4. Handling Ratings of RF-BM-2651B1 | Items | Condition | Min. | Тур. | Max. | Unit | |----------------------------|-----------|------|-------|------|------------| | Storage Temperature | Tstg | -40 | +25 | +125 | $^{\circ}$ | | Human Body Model | НВМ | | ±2000 | | V | | Moisture Sensitivity Level | | | 3 | | | | Charged Device Model | | | ±500 | | V | # 4 Application, Implementation, and Layout # **4.1 Module Photos** Figure 4. Photos of RF-BM-2651B1 # 4.2 Recommended PCB Footprint Figure 5. Recommended PCB Footprint of RF-BM-2651B1 (mm) # 4.3 Schematic Diagram Figure 6. Schematic Diagram of RF-BM-2651B1 # 4.4 Reference Design Figure 7. Reference Design of RF-BM-2651B1 #### 4.5 Antenna #### 4.5.1 Antenna Design Recommendation - 1. The antenna installation structure has a great influence on the module performance. It is necessary to ensure the antenna is exposed and preferably vertically upward. When the module is installed inside of the case, a high-quality antenna extension wire can be used to extend the antenna to the outside of the case. - 2. The antenna must not be installed inside the metal case, which will cause the transmission distance to be greatly weakened. - The recommendation of antenna layout. The inverted-F antenna position on PCB is free-space electromagnetic radiation. The location and layout of the antenna are key factors to increase the data rate and transmission range. Therefore, the layout of the module antenna location and routing is recommended as follows: - (1) Place the antenna on the edge (corner) of the PCB. - (2) Make sure that there is no signal line or copper foil in each layer below the antenna. - (3) It is best to hollow out the antenna position in the following figure to ensure that the S11 of the module is minimally affected. Figure 8. Recommendation of Antenna Layout Note: The hollow-out position is based on the antenna used. ## 4.6 Basic Operation of Hardware Design - It is recommended to offer the module a DC stabilized power supply, a tiny power supply ripple coefficient, and reliable ground. Please pay attention to the correct connection between the positive and negative poles of the power supply. Otherwise, the reverse connection may cause permanent damage to the module. - Please ensure the supply voltage is between the recommended values. The module will be permanently damaged if the voltage exceeds the maximum value. Please ensure a stable power supply and no frequently fluctuating voltage. - 3. When designing the power supply circuit for the module, it is recommended to reserve more than 30% of the margin, which is beneficial to the long-term stable operation of the whole machine. The module should be far away from the power electromagnetic, transformer, high-frequency wiring, and other parts with large electromagnetic interference. - 4. The bottom of the module should avoid high-frequency digital routing, high-frequency analog routing, and power routing. If it has to route the wire on the bottom of the module, for example, it is assumed that the module is soldered to the Top Layer, the copper must be spread on the connection part of the top layer and the module, and be close to the digital part of the module and routed in the Bottom Layer (all copper is well-grounded). - 5. Assuming that the module is soldered or placed in the Top Layer, it is also wrong to randomly route the Bottom Layer or other layers, which will affect the spurs and receiving sensitivity of the module to some degree. - 6. Assuming that there are devices with large electromagnetic interference around the module, which will greatly affect the module performance. It is recommended to stay away from the module according to the strength of the - interference. If circumstances permit, appropriate isolation and shielding can be done. - 7. Assuming that there are routings of large electromagnetic interference around the module (high-frequency digital, high-frequency analog, power routings), which will also greatly affect the module performance. It is recommended to stay away from the module according to the strength of the interference. If circumstances permit, appropriate isolation and shielding can be done. - 8. It is recommended to stay away from devices whose TTL protocol is the same 2.4 GHz physical layer, for example, USB 3.0. #### 4.7 Trouble Shooting ## 4.7.1 Unsatisfactory Transmission Distance - When there is a linear communication obstacle, the communication distance will be correspondingly weakened. Temperature, humidity, and co-channel interference will lead to an increase in the communication packet loss rate. The performance of ground absorption and reflection of radio waves will be poor when the module is tested close to the ground. - 2. Seawater has a strong ability to absorb radio waves, so the test results by the seaside are poor. - 3. The signal attenuation will be very obvious if there is metal near the antenna or if the module is placed inside the metal shell. - 4. The incorrect power register set or the high data rate in the open air may shorten the communication distance. The higher the data rate, the closer the distance. - 5. The low voltage of the power supply is lower than the recommended value at ambient temperature, and the lower the voltage, the smaller the power is. - 6. The unmatchable antennas and modules or the poor quality of antenna will affect the communication distance. #### 4.7.2 Vulnerable Module - Please ensure the supply voltage is between the recommended values. The module will be permanently damaged if the voltage exceeds the maximum value. Please ensure a stable power supply and no frequently fluctuating voltage. - 2. Please ensure the anti-static installation and the electrostatic sensitivity of high-frequency devices. - 3. Due to some humidity-sensitive components, please ensure the suitable humidity during installation and application. If there is no special demand, it is not recommended to use at too high or too low temperature. #### 4.7.3 High Bit Error Rate 1. There are co-channel signal interferences nearby. It is recommended to be away from the interference sources or modify the frequency and channel to avoid interferences. - 2. The unsatisfactory power supply may also cause garbled. It is necessary to ensure the power supply's reliability. - 3. If the extension wire or feeder wire is of poor quality or too long, the bit error rate will be high. #### 4.8 Electrostatics Discharge Warnings The module will be damaged by the discharge of static. RF-star suggests that all modules should follow the 3 precautions below: - 1. According to the anti-static measures, bare hands are not allowed to touch modules. - 2. Modules must be placed in anti-static areas. - 3. Take the anti-static circuitry (when inputting HV or VHF) into consideration in product design. Static may result in the degradation in performance of the module, even causing failure. # 4.9 Soldering and Reflow Condition - 1. Heating method: Conventional Convection or IR/convection. - 2. Solder paste composition: Sn96.5/Ag3.0/Cu0.5 - 3. Allowable reflow soldering times: 2 times based on the following reflow soldering profile. - 4. Temperature profile: Reflow soldering shall be done according to the following temperature profile. - 5. Peak temperature: 245 ℃. Table 5. Temperature Table of Soldering and Reflow | Profile Feature | Sn-Pb Assembly | Pb-Free Assembly | |---------------------------------------------------------------------------|----------------|------------------------| | Solder Paste | Sn63 / Pb37 | Sn96.5 / Ag3.0 / Cu0.5 | | Min. Preheating Temperature (T _{min}) | 100 ℃ | 150 ℃ | | Max. Preheating Temperature (T _{max}) | 150 ℃ | 200 ℃ | | Preheating Time (T _{min} to T _{max}) (t ₁) | 60 s ~ 120 s | 60 s ~ 120 s | | Average Ascend Rate (T _{max} to T _p) | Max. 3 ℃/s | Max. 3 °C/s | | Liquid Temperature (T _L) | 183 ℃ | 217 ℃ | | Time above Liquidus (t _L) | 60 s ~ 90 s | 30 s ~ 90 s | | Peak Temperature (T _p) | 220 ℃ ~235 ℃ | 230 ℃ ~ 250 ℃ | | Average Descend Rate (T _p to T _{max}) | Max. 6 °C/s | Max. 6 °C/s | | Time from 25 ℃ to Peak Temperature (t₂) | Max. 6 minutes | Max. 8 minutes | | Time of Soldering Zone (t _P) | 20±10 s | 20±10 s | Figure 9. Recommended Reflow for Lead-Free Solder # **5 Optional Package Specification** The default package method is **by tray**. If you need the modules to be shipped by tape & reel, pls contact us in advance. Figure 10. Default Package by Tray Figure 11. Package by Tape & Reel # **6 Revision History** | Date | Version No. | Description | |------------|-------------|----------------------------------------| | 2023.03.21 | V1.0 | The initial version is released. | | | | Update the mistake of pin description. | | 2023.05.25 | V1.0 | Update the MSL level. | | | | Update the Shenzhen office address. | #### Note: - 1. The document will be optimized and updated from time to time. Before using this document, please make sure it is the latest version. - 2. To obtain the latest document, please download it from the official website: www.szrfstar.com and www.szrfstar.com. ## 7 Contact Us #### SHENZHEN RF-STAR TECHNOLOGY CO., LTD. #### Shenzhen HQ: Add.: Room 502, Podium Building No. 12, Shenzhen Bay Science and Technology Ecological Park, Nanshan District, Shenzhen, Guangdong, China, 518063 Tel.: 86-755-8632 9829 # Chengdu Branch: Add.: N2-1604, Global Center, North No. 1700, Tianfu Avenue, Hi-Tech District, Chengdu, Sichuan, China, 610095 Tel.: 86-28-8692 5399 Email: sunny@szrfstar.com, sales@szrfstar.com Web.: <u>www.rfstariot.com</u>, www.szrfstar.com